

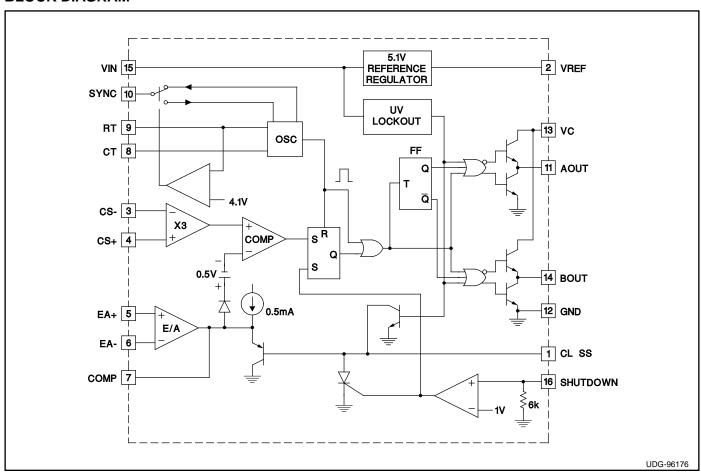
UC1856 UC2856 UC3856

Improved Current Mode PWM Controller

FEATURES

- Pin-for-Pin Compatible With the UC3846
- 65ns Typical Delay From Shutdown to Outputs, and 50ns Typical Delay From Sync to Outputs
- Improved Current Sense Amplifier With Reduced Noise Sensitivity
- Differential Current Sense with 3V Common Mode Range
- Trimmed Oscillator Discharge Current for Accurate Deadband Control
- Accurate 1V Shutdown Threshold
- High Current Dual Totem Pole Outputs (1.5A peak)
- TTL Compatible Oscillator SYNC Pin Thresholds
- 4kV ESD Protection

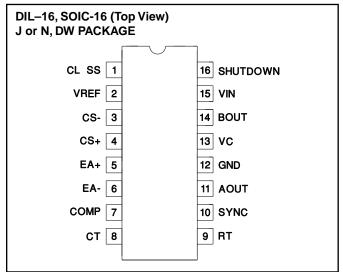
DESCRIPTION

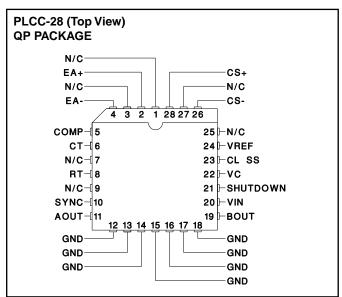

The UC3856 is a high performance version of the popular UC3846 series of current mode controllers, and is intended for both design upgrades and new applications where speed and accuracy are important. All input to output delays have been minimized, and the current sense output is slew rate limited to reduce noise sensitivity. Fast 1.5A peak output stages have been added to allow rapid switching of power FETs.

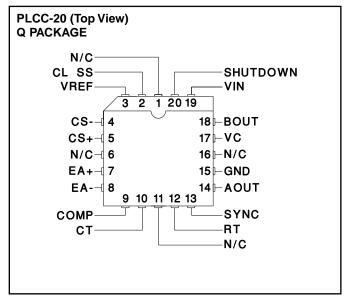
A low impedance TTL compatible sync output has been implemented with a tri-state function when used as a sync input.

Internal chip grounding has been improved to minimize internal "noise" caused when driving large capacitive loads. This, in conjunction with the improved differential current sense amplifier results in enhanced noise immunity.

Other features include a trimmed oscillator current (8%) for accurate frequency and dead time control; a 1V, 5% shutdown threshold; and 4kV minimum ESD protection on all pins.


BLOCK DIAGRAM




ABSOLUTE MAXIMUM RATINGS

Supply Voltage+40V	/
Collector Supply Voltage+40V	
Output Current, Source or Sink	
DC	١
Pulse (0.5µs)2.0A	
Error Amp Inputs0.3V to +VIN	
Shutdown Input0.3V to +10V	
Current Sense Inputs	
SYNC Output Current±10mA	
Error Amplifier Output Current–5mA	١
Soft Start Sink Current50mA	
Oscillator Charging Current5mA	١
Power Dissipation at TA = 25°C (Note 2)1000mW	
Power Dissipation at Tc = 25°C (Note 2)2000mW	/
Junction Temperature55°C to +150°C	;
Storage Temperature Range65°C to +150°C	;
Lead Temperature (Soldering, 10 sec.)+300°C	;
All voltages are with respect to Ground. Currents are positive	
into, negative out of the specified terminal. Consult packaging	
section of databook for thermal limitations and considerations of	f
package.	

CONNECTION DIAGRAMS

ELECTRICAL CHARACTERISTICS Unless otherwise stated, these specifications apply for $TA = -55^{\circ}C$ to $+125^{\circ}C$ for UC1856; $-40^{\circ}C$ to $+85^{\circ}C$ for the UC2856; and $0^{\circ}C$ to $+70^{\circ}C$ for the UC3856, VIN = 15V, RT = 10k, CT = 1nF, TA = TJ.

		UC1	856/UC	2856				
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Reference Section								•
Output Voltage	T _J = 25°C, lo = 1mA	5.05	5.10	5.15	5.00	5.10	5.20	V
Line Regulation	VIN = 8V to 40V			20			20	mV
Load Regulation	Io = -1mA to -10mA			15			15	mV
Total Output Variation	Line, Load, and Temperature	5.00		5.20	4.95		5.25	V
Output Noise Voltage	10Hz < f < 10kHz, T _J = 25°C		50			50		μV
Long Term Stability	T _J = 125°C, 1000 Hrs (Note 2)		5	25		5	25	mV
Short Circuit Current	VREF = 0V	-25	-45	-65	-25	-45	-65	mA
Oscillator Section								
Initial Accuracy	T _J = 25°C	180	200	220	180	200	220	kHz
	Over Operating Range	170		230	170		230	kHz

ELECTRICAL CHARACTERISTICS (cont.) Unless otherwise stated, these specifications apply for $TA = -55^{\circ}C$ to $+125^{\circ}C$ for UC1856; $-40^{\circ}C$ to $+85^{\circ}C$ for the UC2856; and $0^{\circ}C$ to $+70^{\circ}C$ for the UC3856, VIN = 15V, RT = 10k, CT = 1nF, TA = TJ.

		UC	1856/U	C2856				
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Oscillator Section (cont.)			•	•	•			
Voltage Stability	VIN = 8V to 40V			2			2	%
Discharge Current	T _J = 25°C, V _C T = 2V	7.5	8.0	8.8	7.5	8.0	8.8	mA
	Vct = 2V	6.7	8.0	8.8	6.7	8.0	8.8	mA
Sync Output High Level	Io = -1mA	2.4	3.6		2.4	3.6		V
Sync Output Low Level	Io = +1mA		0.2	0.4		0.2	0.4	V
Sync Input High Level	CT = 0V, RT = VREF	2.0	1.5		2.0	1.5		V
Sync Input Low Level	CT = 0V, RT = VREF		1.5	0.8		1.5	0.8	V
Sync Input Current	CT = 0V, RT = VREF		1	10		1	10	μΑ
	VSYNC = 5V							
Sync Delay to Outputs	CT = 0V, RT = VREF		50	100		50	100	ns
, , ,	VSYNC = 0.8V to 2V							
Error Amplifier Section								
Input Offset Voltage	VcM = 2V			5			10	mV
Input Bias Current				-1			-1	μΑ
Input Offset Current				500			500	nA
Common Mode Range	VIN = 8V to 40V	0		VIN – 2	0		VIN – 2	V
Open Loop Gain	Vo = 1.2V to 3V	80	100		80	100		dB
Unity Gain Bandwidth	T _J = 25°C	1	1.5		1	1.5		MHz
CMRR	$V_{CM} = 0V$ to 38V, $V_{IN} = 40V$	75	100		75	100		dB
PSRR	VIN = 8V to 40V	80	100		80	100		dB
Output Sink Current	$V_{ID} = -15$ mV, $V_{COMP} = 1.2$ V	5	10		5	10		mΑ
Output Source Current	VID = 15mV, $VCOMP = 2.5V$	-0.4	-0.5		-0.4	-0.5		mΑ
Output High Level	VID = 50mV, RL (COMP) = 15k	4.3	4.6	4.9	4.3	4.6	4.9	V
Output Low Level	$V_{ID} = -50$ m V , R_L (COMP) = 15 k		0.7	1		0.7	1	V
Current Sense Amplifier Section	L							
Amplifier Gain	Vcs-= 0V, CL SS Open (Notes 3,4)	2.5	2.75	3.0	2.5	2.75	3.0	V/V
Maximum Differential	CL SS Open (Note 3)	1.1	1.2		1.1	1.2		V
Input Signal (Vcs+ - Vcs-)	RL (COMP) = 15k							
Input Offset Voltage	Vcl ss = 0.5V		5	35		5	35	mV
put Goct tollago	COMP Open (Note 3)							
CMRR	Vcm = 0V to 3V	60			60			dB
PSRR	VIN = 8V to 40V	60			60			dB
Input Bias Current	VcL ss = 0.5V, COMP Open (Note 3)			-1	-3	-1	-3	μΑ
Input Offset Current	VcL ss = 0.5V, COMP Open (Note 3)			1			1	mA
Input Common Mode Range		0		3	0		3	V
Delay to Outputs	VEA+ = VREF, EA- = 0V		120	250		120	250	ns
	CS+ - CS- = 0V to 1.5V							
Current Limit Adjust Section							1	
Current Limit Offset	Vcs- = 0V	0.43	0.5	0.57	0.43	0.5	0.57	V
	Vcs+ = 0V, COMP = Open (Note 3)							
Input Bias Current	VEA+ = VREF, VEA- = 0V		-10	-30		-10	-30	μΑ
Shutdown Terminal Section				1		T	T	
Threshold Voltage		0.95	1.00	1.05	0.95	1.00	1.05	V
Input Voltage Range		0		5	0		5	V

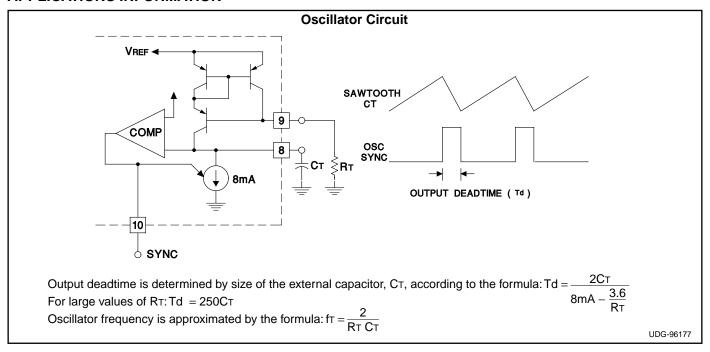
ELECTRICAL CHARACTERISTICS (cont.) Unless otherwise stated, these specifications apply for $TA = -55^{\circ}C$ to $+125^{\circ}C$ for UC1856; $-40^{\circ}C$ to $+85^{\circ}C$ for the UC2856; and $0^{\circ}C$ to $+70^{\circ}C$ for the UC3856, VIN = 15V, RT = 10k, CT = 1nF, TA = TJ.

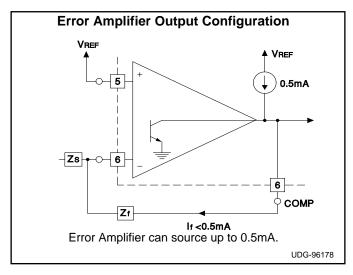
		UC	2856					
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Shutdown Terminal Section (con	t.)			•	•			
Minimum Latching	(Note 5)	3	1.5		3	1.5		mA
Current (IcL ss)								
Maximum Non-Latching	(Note 6)		1.5	0.8		1.5	0.8	mA
Current (IcL ss)								
Delay to Outputs	VSHUTDOWN = 0 to 1.3V		65	110		65	110	ns
Output Section		•						_
Collector-Emitter Voltage		40			40			V
Off-State Bias Current	VC = 40V			250			250	μΑ
Output Low Level	IOUT = 20mA		0.1	0.5		0.1	0.5	V
	IOUT = 200mA		0.5	2.6		0.5	2.6	V
Output High Level	IOUT = -20mA	12.5	13.2		12.5	13.2		V
	IOUT = -200mA	12	13.1		12	13.1		V
Rise Time	C1 = 1nF		40	80		40	80	ns
Fall Time	C1 = 1nF		40	80		40	80	ns
UVLO Low Saturation	VIN = 0V, $IOUT = 20mA$		0.8	1.5		0.8	1.5	V
PWM Section								_
Maximum Duty Cycle		45	47	50	45	47	50	%
Minimum Duty Cycle				0			0	%
Undervoltage Lockout Section								
Startup Threshold	Startup Threshold			8.0		7.7	8.0	V
Threshold Hysterisis			0.7			0.7		V
Total Standby Current								
Supply Current			18	23		18	23	mA

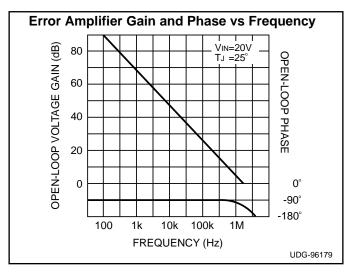
Note 1: All voltages are with respect to GND. Currents are positive into, negative out of the specified terminal.

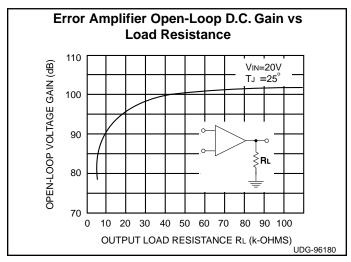
Note 2: This parameter, although guaranteed over the recommended operating conditions is not 100% tested in production.

Note 3: Parameter measured at trip point of latch with VEA+ = VREF, VEA- = 0V.

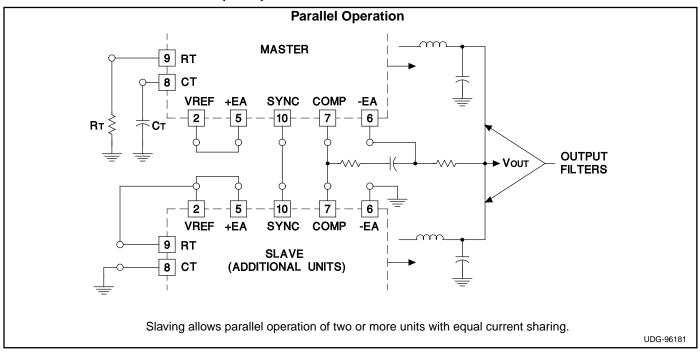

Note 4: Amplifier gain defined as:

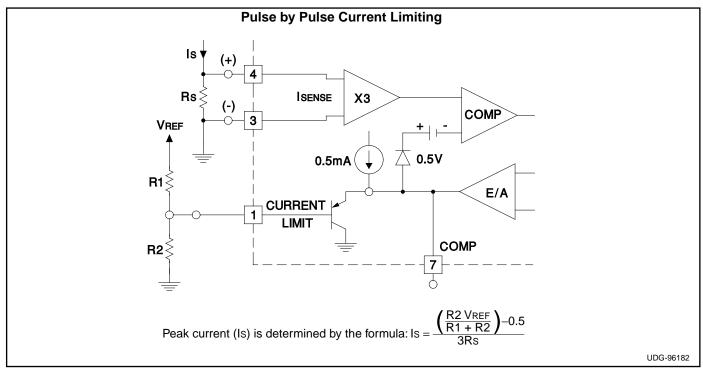

 $G = \frac{\Delta V_{COMP}}{\Delta V_{CS+}};$ $\Delta V_{CS-} = 0V \text{ to } 1.0V$

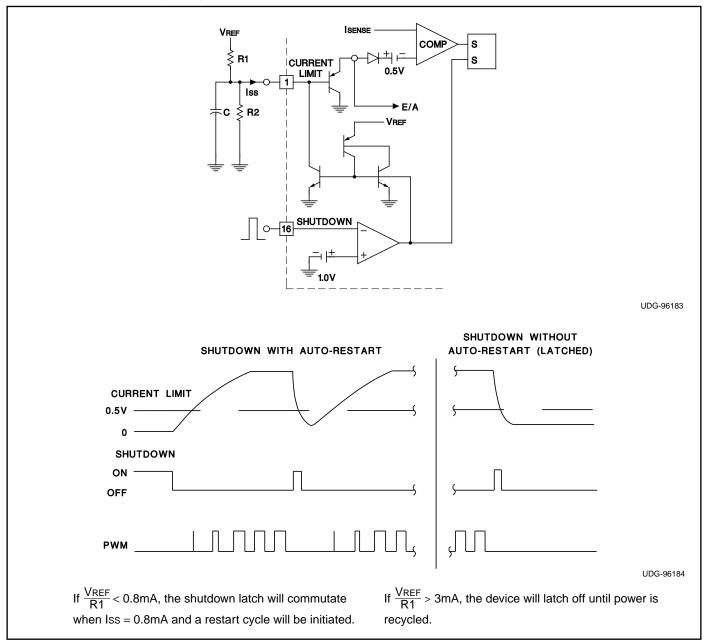

Note 5: Current into CL SS guaranteed to latch circuit into shutdown state.


Note 6: Current into CL SS guaranteed not to latch circuit into shutdown state.

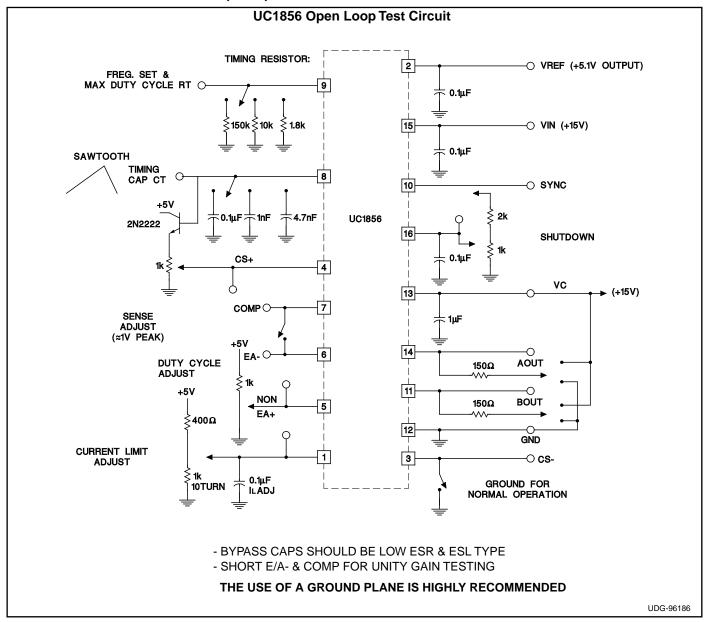
APPLICATIONS INFORMATION







APPLICATIONS INFORMATION (cont.)



APPLICATIONS DATA (cont.)

Current Sense Amplifier Connections US RS C CURRENT SENSE SENSE A small RC filter may be required in some applications to reduce switch transients. Differential input allows remote, noise sensing.

APPLICATIONS INFORMATION (cont.)

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	n MSL Peak Temp ⁽³⁾
5962-9453001M2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
5962-9453001MEA	ACTIVE	CDIP	J	16	1	TBD	A42 SNPB	N / A for Pkg Type
UC1856J	ACTIVE	CDIP	J	16	1	TBD	A42 SNPB	N / A for Pkg Type
UC1856J883B	ACTIVE	CDIP	J	16	1	TBD	A42 SNPB	N / A for Pkg Type
UC1856L	OBSOLETE	TO/SOT	L	28		TBD	Call TI	Call TI
UC1856L20	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
UC1856L20883B	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
UC1856L883B	OBSOLETE	TO/SOT	L	28		TBD	Call TI	Call TI
UC2856DW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
UC2856DWG4	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
UC2856DWTR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
UC2856DWTRG4	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
UC2856J	ACTIVE	CDIP	J	16	1	TBD	A42 SNPB	N / A for Pkg Type
UC2856N	ACTIVE	PDIP	N	16	25	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type
UC2856NG4	ACTIVE	PDIP	N	16	25	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type
UC3856DW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
UC3856DWG4	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
UC3856DWTR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
UC3856DWTRG4	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
UC3856N	ACTIVE	PDIP	N	16	25	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type
UC3856NG4	ACTIVE	PDIP	N	16	25	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type
UC3856Q	ACTIVE	PLCC	FN	20	46	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR
UC3856QG3	ACTIVE	PLCC	FN	20	46	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

PACKAGE OPTION ADDENDUM

27-Nov-2008

for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

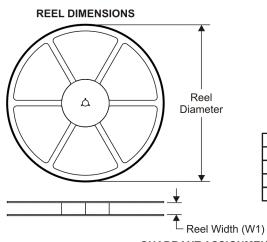
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

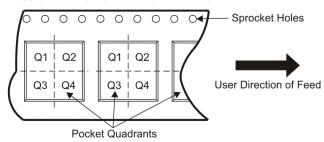
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF UC1856, UC2856, UC2856M, UC3856:


• Automotive: UC2856-Q1

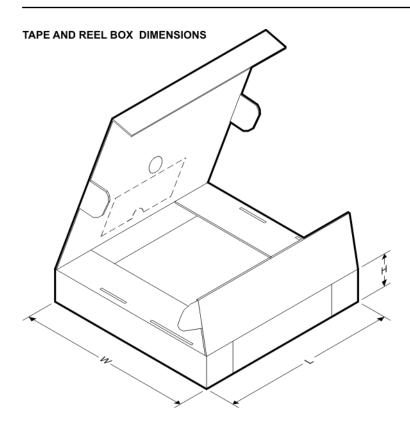
NOTE: Qualified Version Definitions:

• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects


TAPE AND REEL INFORMATION

TAPE DIMENSIONS + K0 - P1 - B0 W Cavity - A0 -

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
UC2856DWTR	SOIC	DW	16	2000	330.0	16.4	10.85	10.8	2.7	12.0	16.0	Q1
UC3856DWTR	SOIC	DW	16	2000	330.0	16.4	10.85	10.8	2.7	12.0	16.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
UC2856DWTR	SOIC	DW	16	2000	346.0	346.0	33.0
UC3856DWTR	SOIC	DW	16	2000	346.0	346.0	33.0

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Amplifiers amplifier.ti.com Data Converters dataconverter.ti.com DSP dsp.ti.com Clocks and Timers www.ti.com/clocks Interface interface.ti.com Logic logic.ti.com Power Mgmt power.ti.com Microcontrollers microcontroller.ti.com www.ti-rfid.com RF/IF and ZigBee® Solutions www.ti.com/lprf

Applications	
Audio	www.ti.com/audio
Automotive	www.ti.com/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Medical	www.ti.com/medical
Military	www.ti.com/military
Optical Networking	www.ti.com/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video & Imaging	www.ti.com/video
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated